Back to Search Start Over

Simulation Study of High-Precision Characterization of MeV Electron Interactions for Advanced Nano-Imaging of Thick Biological Samples and Microchips.

Authors :
Yang, Xi
Wang, Liguo
Smaluk, Victor
Shaftan, Timur
Wang, Tianyi
Bouet, Nathalie
D'Amen, Gabriele
Wan, Weishi
Musumeci, Pietro
Source :
Nanomaterials (2079-4991). Nov2024, Vol. 14 Issue 22, p1797. 17p.
Publication Year :
2024

Abstract

The resolution of a mega-electron-volt scanning transmission electron microscope (MeV-STEM) is primarily governed by the properties of the incident electron beam and angular broadening effects that occur within thick biological samples and microchips. A precise understanding and mitigation of these constraints require detailed knowledge of beam emittance, aberrations in the STEM column optics, and energy-dependent elastic and inelastic critical angles of the materials being examined. This simulation study proposes a standardized experimental framework for comprehensively assessing beam intensity, divergence, and size at the sample exit. This framework aims to characterize electron-sample interactions, reconcile discrepancies among analytical models, and validate Monte Carlo (MC) simulations for enhanced predictive accuracy. Our numerical findings demonstrate that precise measurements of these parameters, especially angular broadening, are not only feasible but also essential for optimizing imaging resolution in thick biological samples and microchips. By utilizing an electron source with minimal emittance and tailored beam characteristics, along with amorphous ice and silicon samples as biological proxies and microchip materials, this research seeks to optimize electron beam energy by focusing on parameters to improve the resolution in MeV-STEM/TEM. This optimization is particularly crucial for in situ imaging of thick biological samples and for examining microchip defects with nanometer resolutions. Our ultimate goal is to develop a comprehensive mapping of the minimum electron energy required to achieve a nanoscale resolution, taking into account variations in sample thickness, composition, and imaging mode. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
22
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
181205371
Full Text :
https://doi.org/10.3390/nano14221797