Back to Search Start Over

Quantifying the impact of X-band InSAR penetration bias on elevation change and mass balance estimation.

Authors :
Abdullahi, Sahra
Burgess, David
Wessel, Birgit
Copland, Luke
Roth, Achim
Source :
Annals of Glaciology. Sep2024, Vol. 64 Issue 92, p396-410. 15p.
Publication Year :
2024

Abstract

Interferometric synthetic aperture radar (InSAR) data suffer from an elevation bias due to signal penetration into the firn and ice surface, rendering the height information unusable for elevation and mass-change detection. This study estimates the penetration bias in X-band InSAR data to quantify its impact on elevation and mass-change detection and to demonstrate the applicability of TanDEM-X digital elevation models (DEMs) for cryosphere research. To achieve this, a multiple linear regression model is applied to a time series of four TanDEM-X DEMs acquired between 2010 and 2018 over the Sverdrup Glacier basin (SGB), Devon Ice Cap, Canada. The resulting penetration corrected TanDEM-X DEMs agreed to within ±14 cm of spatially and temporally coincident precise in situ kinematic dGPS data (±10 cm RMSE). Additionally, multi-year estimations of mass change for the SGB derived from differencing TanDEM-X DEMs over multi-year periods between 2010 and 2018, showed good agreement with mean deviation of 338 ± 166 mm w.e. with independent measurements of mass change derived from annual in situ surface mass balance over the same time periods. The results show that the penetration bias can vary significantly, leading to random under- and overestimations in the detection of elevation and mass changes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02603055
Volume :
64
Issue :
92
Database :
Academic Search Index
Journal :
Annals of Glaciology
Publication Type :
Academic Journal
Accession number :
181256068
Full Text :
https://doi.org/10.1017/aog.2024.7