Back to Search
Start Over
Aging Increases Hypoxia-Induced Endothelial Permeability and Blood-Brain Barrier Dysfunction by Upregulating Arginase-II.
- Source :
-
Aging & Disease . Nov2024, Vol. 15 Issue 6, p2710-2726. 17p. - Publication Year :
- 2024
-
Abstract
- Increased endothelial permeability plays an important role in blood-brain barrier (BBB) dysfunction and is implicated in neuronal injury in many diseased conditions. BBB disruption is primarily determined by dysfunction of endothelial cell-cell junctions. Deprivation of oxygen supply or hypoxia, a common feature of a variety of human diseases, is a major risk factor for BBB disruption. The molecular regulatory mechanisms of hypoxiainduced BBB dysfunction remain incompletely understood. The mitochondrial enzyme, arginase type II (Arg-II), has been shown to promote endothelial dysfunction. However, its role in hypoxia-induced BBB dysfunction has not been explored. In the C57BL/6J mouse model, hypoxia (8% O2, 24 hours) augments vascular Arg-II in the hippocampus, decreases cell-cell junction protein levels of Zonula occludens-1 (ZO-1), occludin, and CD31 in endothelial cells, increases BBB leakage in the brain in old mice (20 to 24 months) but not in young animals (3 to 6 months). These effects of hypoxia in aging are suppressed in arg-ii-/- mice. Moreover, the age-associated vulnerability of endothelial integrity to hypoxia is demonstrated in senescent human brain microvascular endothelial cell (hCMEC/D3) culture model. Further results in the cell culture model show that hypoxia augments Arg-II, decreases ZO-1 and occludin levels, and increases endothelial permeability, which is prevented by arg-ii gene silencing or by inhibition of mitochondrial reactive oxygen species (mtROS) production. Our study demonstrates an essential role of Arg-II in increased endothelial permeability and BBB dysfunction by promoting mtROS generation, resulting in decreased endothelial cell-cell junction protein levels under hypoxic conditions particularly in aging. [ABSTRACT FROM AUTHOR]
- Subjects :
- *ENDOTHELIAL cells
*BLOOD-brain barrier disorders
*CELL permeability
Subjects
Details
- Language :
- English
- ISSN :
- 21525250
- Volume :
- 15
- Issue :
- 6
- Database :
- Academic Search Index
- Journal :
- Aging & Disease
- Publication Type :
- Academic Journal
- Accession number :
- 181402252
- Full Text :
- https://doi.org/10.14336/AD.2023.1225