Back to Search
Start Over
Optimizing mechanical properties and pioneering biodegradable polymer blends for superior energy-absorbing structures used in sport helmets.
- Source :
-
Archives of Civil & Mechanical Engineering (Elsevier Science) . Jan2025, Vol. 25 Issue 1, p1-22. 22p. - Publication Year :
- 2025
-
Abstract
- Replacing elements made of conventional plastics (like polystyrene) with biodegradable substitutes is part of the trend of sustainable development and waste reduction. The manuscript covers issues related to the design, manufacturing and testing of sports helmet protective inserts made of biodegradable material. The FEM numerical simulations carried out by the authors allowed to determine the optimal desirable mechanical properties (Re = 8.5–65 MPa, E = 500–8000 MPa for 30 × 30 mm inserts; Re = 10.5–60 MPa, E = 500–7500 MPa for 48 × 48 mm inserts; Re = 13–95 MPa, E = 400–8500 MPa for 55 × 55 mm inserts) and geometric parameters (wall thickness equal to 0.2–0.5 mm, height of 20 mm), ensuring the formation of a plastic fold, which is the most effective energy-absorbing mechanism. The conducted quasi-static compression, bending and dynamic tensile strength tests allowed to determine blends with appropriate proportions of durable PLA with more plastic PBAT, PBS and TPS that meet the established criteria: PLA50PBAT50, PLA30PBAT70 and PLA30TPS70. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16449665
- Volume :
- 25
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Archives of Civil & Mechanical Engineering (Elsevier Science)
- Publication Type :
- Academic Journal
- Accession number :
- 181496403
- Full Text :
- https://doi.org/10.1007/s43452-024-01075-5