Back to Search Start Over

Polyether‐Derived Carbon Material and Ionic Liquid (Tributylmethylphosphonium iodide) Incorporated Poly(Vinylidene Fluoride‐co‐Hexafluoropropylene)‐Based Polymer Electrolyte for Supercapacitor Application.

Authors :
Nazir, Sehrish
Singh, Pramod K.
Jain, Amrita
Michalska, Monika
Yahya, M. Z. A.
Yusuf, S. N. F.
Diantoro, Markus
Latif, Famiza Abdul
Singh, Manoj K.
Source :
Energy Storage (2578-4862). Dec2024, Vol. 6 Issue 8, p1-15. 15p.
Publication Year :
2024

Abstract

Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP)‐sodium thiocyanate (NaSCN) solid polymer electrolytes containing different weight ratios of ionic liquid (IL)—tributylmethylphosphonium iodide (TBMPI) were prepared using solution‐cast approach. Electrochemical impedance data indicates that increasing ionic liquid into polymer electrolyte matrix increases ionic conductivity and the maximum value of ionic conductivity was obtained at 150 wt% TBMPI, having conductivity value of 8.3 × 10−5 S cm−1. The dielectric measurement supports our conductivity data. Ionic transference number measurement affirms this system to be predominantly ionic in nature, while electrochemical stability window (ESW) was found to be 3.4 V. Polarized optical microscopy (POM) along with differential scanning calorimetry (DSC) suggest suitability of TBMPI as plasticizer, while infrared spectroscopy (FTIR) confirms ion interaction, complexation, and composite nature. The thermogravimetric analysis (TGA) shows thermal stability of these ionic liquid‐doped polymer electrolytes (ILDPEs). Using maximum conducting ILDPE, a sandwiched supercapacitor has been fabricated which shows stable performance as high as 228 Fg−1 using cyclic voltammetry (CV). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25784862
Volume :
6
Issue :
8
Database :
Academic Search Index
Journal :
Energy Storage (2578-4862)
Publication Type :
Academic Journal
Accession number :
181803684
Full Text :
https://doi.org/10.1002/est2.70083