Back to Search Start Over

Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade.

Authors :
Yu, Xin
Jiang, Juan
Li, Cheng
Wang, Yang
Ren, Zhengrong
Hu, Jianlun
Yuan, Tao
Wu, Yongjie
Wang, Dongsheng
Sun, Ziying
Wu, Qi
Chen, Bin
Fang, Peng
Ding, Hao
Meng, Jia
Jiang, Hui
Zhao, Jianning
Bao, Nirong
Source :
Molecular Medicine. 12/20/2024, Vol. 30 Issue 1, p1-26. 26p.
Publication Year :
2024

Abstract

Background: Periprosthetic osteolysis and subsequent aseptic loosening are the leading causes of failure following total joint arthroplasty. Osteogenic impairment induced by wear particles is regarded as a crucial contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress identified as a key underlying mechanism. Therefore, identifying potential therapeutic targets and agents that can regulate ER stress adaption in osteoblasts is necessary for arresting aseptic loosening. Osthole (OST), a natural coumarin derivative, has demonstrated promising osteogenic properties and the ability to modulate ER stress adaption in various diseases. However, the impact of OST on ER stress-mediated osteogenic impairment caused by wear particles remains unclear. Methods: TiAl6V4 particles (TiPs) were sourced from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was utilized to explore the effects of OST on TiPs-induced osteogenic impairment in vivo. Primary mouse osteoblasts were employed to investigate the impact of OST on ER stress-mediated osteoblast apoptosis and osteogenic inhibition induced by TiPs in vitro. The mechanisms underlying OST-modulated alleviation of ER stress induced by TiPs were elucidated through Molecular docking, immunochemistry, PCR, and Western blot analysis. Results: In this study, we found that OST treatment effectively mitigated TiAl6V4 particles (TiPs)-induced osteolysis by enhancing osteogenesis in a mouse calvarial model. Furthermore, we observed that OST could attenuate ER stress-mediated apoptosis and osteogenic reduction in osteoblasts exposed to TiPs in vitro and in vivo. Mechanistically, we demonstrated that OST exerts bone-sparing effects on stressed osteoblasts upon TiPs exposure by specifically suppressing the ER stress-dependent PERK signaling cascade. Conclusion: Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade. These findings suggest that OST may serve as a potential therapeutic agent for combating wear particle-induced osteogenic impairment, offering a novel alternative strategy for managing aseptic prosthesis loosening. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10761551
Volume :
30
Issue :
1
Database :
Academic Search Index
Journal :
Molecular Medicine
Publication Type :
Academic Journal
Accession number :
181829841
Full Text :
https://doi.org/10.1186/s10020-024-01034-z