Back to Search Start Over

Halogenated Ethylamine Hydrochloride Modulation Facilitating a VOC of 1.19 V in Perovskite Solar Cells.

Authors :
Wang, Ying
Wu, Jihuai
Deng, Chunyan
Liu, Fengli
Guo, Mengyao
Xu, Jingwei
Gao, Lin
Huang, Miaoliang
Lan, Zhang
Gao, Peng
Source :
Advanced Functional Materials. Jan2025, p1. 11p. 7 Illustrations.
Publication Year :
2025

Abstract

Interface engineering has emerged as an effective strategy for optimizing the charge carrier dynamics in perovskite solar cells, and the design of modulators plays a crucial role in improving interface effects. Here, halogenated ethylamine hydrochloride (XEA), such as 2‐fluoroethylamine hydrochloride (FEA), 2‐chloroethylamine hydrochloride (CEA), or ethylamine hydrochloride (EA), is incorporated into the buried interface between perovskite layer (PVK) and SnO2 electron transport layer (ETL) to assist crystal growth, tune the energy level and passivate defects. Pre‐embedded XEA interacts with PbI2 to form a 2D mesophase. The mesophase assists the growth dynamics and orientation of the epitaxial perovskite, resulting in uniform perovskite films with larger grains and higher densification, effectively reducing the defects caused by excess PbI2 at the buried interface. NH3+ cation and X− anion ions on XEA fill and coordinate the vacancies, passivating the defects in SnO2 and perovskite. Meanwhile, the introduction of XEA adjusts the energy match between PVK/ETL, compensating the energy loss at the buried interface. Consequently, the FEA‐modified devices exhibited a power conversion efficiency of 24.7%, featuring an exceptionally high open‐circuit voltage of 1.19 V and remarkable stability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
182032673
Full Text :
https://doi.org/10.1002/adfm.202419868