Back to Search
Start Over
Modelling and Simulation of Pico- and Nano-Grids for Renewable Energy Integration in a Campus Microgrid.
- Source :
-
Energies (19961073) . Jan2025, Vol. 18 Issue 1, p67. 33p. - Publication Year :
- 2025
-
Abstract
- Research in renewable energy sources and microgrid systems is critical for the evolving power industry. This paper examines the operational behavior of both pico- and nano-grids during transitions between grid-connected and islanded modes. Simulation results demonstrate that both grids effectively balance the power flow, regulate the state of charge (SOC), and stabilize the voltage during dynamic operational changes. Specific scenarios, including grid disconnection, load sharing, and weather-based energy fluctuations, were tested and validated. This paper models both pico-grids and nano-grids at the Singapore Institute of Technology Punggol Campus, incorporating solar PVs, energy storage systems (ESSs), power electronic converters, and both DC and AC loads, along with utility grid connections. The pico-grid includes a battery storage system, a single-phase inverter linked to a single-phase grid, and DC and AC loads. The nano-grid comprises solar PV panels, a boost converter, a battery storage system, a three-phase inverter connected to a three-phase grid, and AC loads. Both the pico-grid and nano-grid are configurable in standalone or grid-connected modes. This configuration flexibility allows for a detailed operational analysis under various conditions. This study conducted subsystem-level modelling before integrating all components into a simulation environment. MATLAB/Simulink version R2024b was utilized to model, simulate, and analyze the power flow in both the pico-grid and nano-grid under different operating conditions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 18
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 182444913
- Full Text :
- https://doi.org/10.3390/en18010067