Back to Search
Start Over
Accelerating CO 2 Outgassing in the Equatorial Pacific from Satellite Remote Sensing.
- Source :
-
Remote Sensing . Jan2025, Vol. 17 Issue 2, p247. 21p. - Publication Year :
- 2025
-
Abstract
- The equatorial Pacific serves as the world's largest oceanic source of CO2. The contrasting ocean environment in the eastern (i.e., upwelling) and western (i.e., warm pool) regions makes it difficult to fully characterize its CO2 dynamics with limited in situ observations. In this study, we addressed this challenge using monthly surface partial pressure of CO2 (pCO2sw) and air-sea CO2 fluxes (FCO2) data products reconstructed from satellite and reanalysis data at a spatial resolution of 1° × 1° in the period of 1982–2021. We found that during the very strong El Niño events (1997/1998, 2015/2016), both pCO2sw and FCO2 showed a significant decrease of 41–58 μatm and 0.5–0.8 mol·m−2·yr−1 in the eastern equatorial Pacific, yet they remained at normal levels in the western equatorial Pacific. In contrast, during the very strong La Niña events (1999/2000, 2007/2008, and 2010/2011), both pCO2sw and FCO2 showed a strong increase of 40–48 μatm and 1.0–1.4 mol·m−2·yr−1 in the western equatorial Pacific, yet with little change in the eastern equatorial Pacific. In the past 40 years, pCO2sw in the eastern equatorial Pacific was increasing at a higher rate (2.32–2.51 μatm·yr−1) than that in the western equatorial Pacific (1.75 μatm·yr−1), resulting in an accelerating CO2 outgassing (at a rate of 0.03 mol·m−2·yr−2) in the eastern equatorial Pacific. We comprehensively analyzed the potential effects of different factors, such as sea surface temperature, sea surface wind speed, and ΔpCO2 in driving CO2 fluxes in the equatorial Pacific, and found that ΔpCO2 had the highest correlation (R ≥ 0.80, at p ≤ 0.05), highlighting the importance of accurate estimates of pCO2sw from satellites. Further studies are needed to constrain the retrieval accuracy of pCO2sw in the equatorial Pacific from satellite remote sensing. [ABSTRACT FROM AUTHOR]
- Subjects :
- *REMOTE sensing
*PARTIAL pressure
*SURFACE pressure
EL Nino
LA Nina
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 17
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 182445307
- Full Text :
- https://doi.org/10.3390/rs17020247