Back to Search Start Over

Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects.

Authors :
Halsey, Kimberly H.
Sayavedra-Soto, Luis A.
Bottomley, Peter J.
Arp, Daniel J.
Source :
Applied Microbiology & Biotechnology. Oct2005, Vol. 68 Issue 6, p794-801. 8p. 3 Charts, 2 Graphs.
Publication Year :
2005

Abstract

The physiological consequences of trichloroethylene (TCE) transformation by three butane oxidizers were examined. Pseudomonas butanovora, Mycobacterium vaccae, and Nocardioides sp. CF8 utilize distinctly different butane monooxygenases (BMOs) to initiate degradation of the recalcitrant TCE molecule. Although the primary toxic event resulting from TCE cometabolism by these three strains was loss of BMO activity, species differences were observed. P. butanovora and Nocardioides sp. CF8 maintained only 4% residual BMO activity following exposure to 165 μM TCE for 90 min and 180 min, respectively. In contrast, M. vaccae maintained 34% residual activity even after exposure to 165 μM TCE for 300 min. Culture viability was reduced 83% in P. butanovora, but was unaffected in the other two species. Transformation of 530 nmol of TCE by P. butanovora (1.0 mg total protein) did not affect the viability of BMO-deficient P. butanovora cells, whereas transformation of 482 nmol of TCE by toluene-grown Burkholderia cepacia G4 caused 87% of BMO-deficient P. butanovora cells to lose viability. Together, these results contrast with those previously reported for other bacteria carrying out TCE cometabolism and demonstrate the range of cellular toxicities associated with TCE cometabolism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01757598
Volume :
68
Issue :
6
Database :
Academic Search Index
Journal :
Applied Microbiology & Biotechnology
Publication Type :
Academic Journal
Accession number :
18660223
Full Text :
https://doi.org/10.1007/s00253-005-1944-z