Back to Search Start Over

Coordinating Multiple Droplets in Planar Array Digital Microfluidic Systems.

Authors :
Griffith, Eric J.
Akella, Srinivas
Source :
International Journal of Robotics Research. Nov2005, Vol. 24 Issue 11, p933-949. 17p.
Publication Year :
2005

Abstract

In this paper we present an approach to coordinate the motions of droplets in digital microfluidic systems, a new class of lab-on-a-chip systems for biochemical analysis. A digital microfluidic system typically consists of a planar array of cells with electrodes that control the droplets. The primary challenge in using droplet-based systems is that they require the simultaneous coordination of a potentially large number of droplets on the array as the droplets move, mix, and split. In this paper we describe a general-purpose system that uses simple algorithms and yet is versatile. First, we present a semi-automated approach to generate the array layout in terms of components. Next, we discuss simple algorithms to select destination components for the droplets and a decentralized scheme for components to route the droplets on the array. These are then combined into a reconfigurable system that has been simulated in soft ware to perform analyses such as the DNA polymerase chain reaction. The algorithms have been able to successfully coordinate hundreds of droplets simultaneously and perform one or more chemical analyses in parallel. Because it is challenging to analytically characterize the behavior of such systems, simulation methods to detect potential system instability are proposed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02783649
Volume :
24
Issue :
11
Database :
Academic Search Index
Journal :
International Journal of Robotics Research
Publication Type :
Academic Journal
Accession number :
18871651
Full Text :
https://doi.org/10.1177/0278364905059067