Back to Search
Start Over
L p -gradient Estimates of Symmetric Markov Semigroups for 1 < p ≤ 2.
- Source :
-
Acta Mathematica Sinica . Feb2006, Vol. 22 Issue 1, p101-104. 4p. - Publication Year :
- 2006
-
Abstract
- For 1 < p ≤ 2, an L p -gradient estimate for a symmetric Markov semigroup is derived in a general framework, i. e. $$ {\left\| {\Gamma ^{{1/2}} {\left( {T_{t} f} \right)}} \right\|}_{p} \leqslant \frac{{C_{p} }} {{{\sqrt t }}}{\left\| f \right\|}_{p} $$ , where Γ is a carré du champ operator. As a simple application we prove that Γ1/2(( I- L)-α) is a bounded operator from L p to L p provided that 1 < p < 2 and $$ \frac{1} {2} < \alpha < 1 $$ . For any 1 < p < 2, q > 2 and $$ \frac{1} {2} < \alpha < 1 $$ , there exist two positive constants c q,α, C p,α such that ∥ Df∥ p ≤ C p,α∥( I - L)α f∥ p , c q,α∥( I - L)1-α f∥ q ≤ ∥ Df∥ q + ∥ f∥ q, where D is the Malliavin gradient ([2]) and L the Ornstein–Uhlenbeck operator. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14398516
- Volume :
- 22
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Acta Mathematica Sinica
- Publication Type :
- Academic Journal
- Accession number :
- 19168978
- Full Text :
- https://doi.org/10.1007/s10114-005-0538-0