Back to Search Start Over

L p -gradient Estimates of Symmetric Markov Semigroups for 1 < p ≤ 2.

Authors :
Cruzeiro, Ana Bela
Xi Cheng Zhang
Source :
Acta Mathematica Sinica. Feb2006, Vol. 22 Issue 1, p101-104. 4p.
Publication Year :
2006

Abstract

For 1 &lt; p ≤ 2, an L p -gradient estimate for a symmetric Markov semigroup is derived in a general framework, i. e. $$ {\left\| {\Gamma ^{{1/2}} {\left( {T_{t} f} \right)}} \right\|}_{p} \leqslant \frac{{C_{p} }} {{{\sqrt t }}}{\left\| f \right\|}_{p} $$ , where Γ is a carr&#233; du champ operator. As a simple application we prove that Γ1/2(( I- L)-α) is a bounded operator from L p to L p provided that 1 &lt; p &lt; 2 and $$ \frac{1} {2} &lt; \alpha &lt; 1 $$ . For any 1 &lt; p &lt; 2, q &gt; 2 and $$ \frac{1} {2} &lt; \alpha &lt; 1 $$ , there exist two positive constants c q,α, C p,α such that ∥ Df∥ p ≤ C p,α∥( I - L)α f∥ p , c q,α∥( I - L)1-α f∥ q ≤ ∥ Df∥ q + ∥ f∥ q, where D is the Malliavin gradient ([2]) and L the Ornstein–Uhlenbeck operator. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14398516
Volume :
22
Issue :
1
Database :
Academic Search Index
Journal :
Acta Mathematica Sinica
Publication Type :
Academic Journal
Accession number :
19168978
Full Text :
https://doi.org/10.1007/s10114-005-0538-0