Back to Search Start Over

Markov-Jump-System-Based Secure Chaotic Communication.

Authors :
Sathyan, Thuraiappah
Kirubarajan, Thiagaligam
Source :
IEEE Transactions on Circuits & Systems. Part I: Regular Papers. Jul2006, Vol. 53 Issue 7, p1597-1609. 13p. 2 Black and White Photographs, 3 Diagrams, 1 Chart, 11 Graphs.
Publication Year :
2006

Abstract

In this paper, a new Markov-jump-system (MJS)-based secure chaotic communication technique is proposed. An MJS evolves by switching from one state evolution model to another according to a finite state Markov chain. The transmitter in the proposed communication system is an MJS consisting of multiple transmission maps, that is, the transmitter switches from one chaotic map to another during the transmission of data. This switching feature makes it difficult to identify and follow the transmission without knowing the transmitter parameters, i.e., to eavesdrop, thereby increasing the security offered by the inherently secure chaotic communication system. If the chaotic maps used at the transmitter, and the corresponding Markov transition probability matrix of the MJS are known to the (authorized) receiver, then a multiple model estimator can be used to track the MJS transmitter. In this paper, the use of the interacting multiple model (IMM) estimator is proposed as part of the receiver to follow the switching transmitter. The effectiveness of the IMM-estimator-based receiver to follow the switching transmitter is evaluated by means of simulations. A new modulation technique that uses the MJS transmitter is also introduced. Further, it is shown that the same receiver framework, when used as a receiver for chaotic parameter modulation, provides significant performance improvement in terms of bit-error rate compared to a receiver that uses extended Kalman filter. In addition, the seemingly more complex IMM-estimator-based receiver is shown to significantly reduce the computational complexity per transmitted bit, thus resulting in increased data rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15498328
Volume :
53
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Circuits & Systems. Part I: Regular Papers
Publication Type :
Periodical
Accession number :
21643539
Full Text :
https://doi.org/10.1109/TCSI.2006.877885