Back to Search Start Over

Linear quadratic regulation for linear time-varying systems with multiple input delays

Authors :
Zhang, Huanshui
Duan, Guangren
Xie, Lihua
Source :
Automatica. Sep2006, Vol. 42 Issue 9, p1465-1476. 12p.
Publication Year :
2006

Abstract

Abstract: This paper studies the classic linear quadratic regulation (LQR) problem for both continuous-time and discrete-time systems with multiple input delays. For discrete-time systems, the LQR problem for systems with single input delay has been studied in existing literature, whereas a solution to the multiple input delay case is not known to our knowledge. For continuous-time systems with multiple input delays, the LQR problem has been tackled via an infinite dimensional system theory approach and a frequency/time domain approach. The objective of the present paper is to give an explicit solution to the LQR problem via a simple and intuitive approach. The main contributions of the paper include a fundamental result of duality between the LQR problem for systems with multiple input delays and a smoothing problem for an associated backward stochastic system. The duality allows us to obtain a solution to the LQR problem via standard projection in linear space. The LQR controller is simply constructed by the solution of one backward Riccati difference (for the discrete-time case) or differential (for the continuous-time case) equation of the same order as the plant (ignoring the delays). [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00051098
Volume :
42
Issue :
9
Database :
Academic Search Index
Journal :
Automatica
Publication Type :
Academic Journal
Accession number :
21666079
Full Text :
https://doi.org/10.1016/j.automatica.2006.04.007