Back to Search Start Over

Effects of fluidised bed quenching on heat treating characteristics of cast Al–Si–Mg and Al–Si–Mg–Cu alloys.

Authors :
Chaudhury, S. K.
Apelian, D.
Source :
International Journal of Cast Metals Research. 2006, Vol. 19 Issue 6, p361-369. 9p. 8 Black and White Photographs, 4 Diagrams, 2 Charts, 12 Graphs.
Publication Year :
2006

Abstract

The quench sensitivity of Al–Si–Mg (D357 unmodified and Sr modified), and Al–Si–Mg–-Cu (354 and 319 Sr modified) cast alloys was investigated using a fluidised bed (FB). The average cooling rate of castings in the fluidised bed is lower than those quenched in water; the cooling rate first increases to a certain maximum and then decreases during quenching. The change in the cooling rate during quenching in water was more drastic, where the cooling rate varied from 0 to -80 K s-1 in less than 8 s, as compared with those quenched in FB, where the cooling rate varied from 0 to -14 K s-1 in 18 s. The FB quenching resulted in the formation of several metastable phases in Al–Si–Mg–Cu alloys; in contrast, no such transformation was observed during water quenching. The T4 yield strength of the FB quenched alloys was greater than water quenched alloys owing to the formation of a greater volume fraction of metastable phases in the FB quenched alloys. The tensile properties of T6 treated alloys show that Al–Si–Mg alloys (both unmodified and Sr modified) are more quench sensitive than Al–Si–Mg–Cu alloys. The high quench sensitivity of the Al–Si–Mg alloys is because GP zones are not formed, whereas GP zones are formed during quenching of the Al–Si–Mg–Cu alloys as predicted by time temperature transformation and continuous cooling transformation) diagrams. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13640461
Volume :
19
Issue :
6
Database :
Academic Search Index
Journal :
International Journal of Cast Metals Research
Publication Type :
Academic Journal
Accession number :
24284508
Full Text :
https://doi.org/10.1179/136404606X157827