Back to Search Start Over

Effect of magnetic field on two-layered natural/thermocapillary convection

Authors :
Ludovisi, D.
Cha, S.S.
Ramachandran, N.
Worek, W.M.
Source :
International Communications in Heat & Mass Transfer. May2007, Vol. 34 Issue 5, p523-533. 11p.
Publication Year :
2007

Abstract

Abstract: Heat transfer in a two-layered fluid system is of great importance in a variety of applications. Control and optimization of convective heat transfer of the immiscible fluids needs complete understanding of all phenomena, especially those induced by surface tension at the fluid interface. The present work is focused on rather complex convective flow and heat transfer phenomena in a cavity, which can be subject to both buoyancy and thermocapillary effects in addition to the influence of magnetic field applied for flow control. With the encapsulant liquid posing magnetic properties, a magnetic force can arise to either enhance or counterbalance the gravity effect when the cavity is placed in a non-uniform magnetic field. In our study, the velocity and temperature distribution of the system can be significantly altered to change the heat transfer by varying intensity and gradient of the applied magnetic field. Preliminary results of numerical computation presented here are for a two-layered liquid cavity MnCl2·4H2O and Fluorinert FC40 under various magnetic fields intensities. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
07351933
Volume :
34
Issue :
5
Database :
Academic Search Index
Journal :
International Communications in Heat & Mass Transfer
Publication Type :
Academic Journal
Accession number :
24970114
Full Text :
https://doi.org/10.1016/j.icheatmasstransfer.2007.02.003