Back to Search Start Over

High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution.

Authors :
Wagner, Jeremiah R.
Junrul Zhang
Brunzelle, Joseph S.
Vierstra, Richard D.
Forest, Katrina T.
Source :
Journal of Biological Chemistry. 4/20/2007, Vol. 282 Issue 16, p12298-12309. 12p. 4 Diagrams, 1 Chart, 3 Graphs.
Publication Year :
2007

Abstract

Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bum chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXa. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45 Å resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3² carbon of biiverdin to Cys24, the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobiin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobiin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhIA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
282
Issue :
16
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
25120851
Full Text :
https://doi.org/10.1074/jbc.M611824200