Back to Search Start Over

Are methyl halides produced on all ice surfaces? Observations from snow-laden field sites

Authors :
Swanson, Aaron L.
Blake, Nicola J.
Blake, Donald R.
Sherwood Rowland, F.
Dibb, Jack E.
Lefer, Barry L.
Atlas, Elliot
Source :
Atmospheric Environment. Aug2007, Vol. 41 Issue 24, p5162-5177. 16p.
Publication Year :
2007

Abstract

We present data collected from a number of snow-covered environments including two polar locations (Summit, Greenland and the South Pole) and two mid-latitude regions (a remote site in northern Michigan, and Niwot Ridge, Colorado). At each site, concentrations of and were enhanced within the interstitial air near the snow surface, compared to levels in boundary layer air. Fluxes of from surface snow to the atmosphere were observed at each site except Niwot Ridge, where appeared to have a sink. The mid-latitude sites showed significant emissions of , mostly originating at the ground surface and traveling up through the snow, while at the polar locations emissions from firn air were relatively small. In general, methyl halide mixing ratios in firn air were significantly greater at Summit than at the South Pole, with Summit showing a strong diurnal cycle in the production of alkyl halides that was well correlated with actinic radiation and firn temperature. We suggest that the most likely route to alkyl halide formation is through an acid catalyzed nucleophilic substitution of an alcohol type function by a halide, both of which should be preferentially segregated to the quasi-liquid layer at the surface of the snow grains. A series of experiments using a snow-filled quartz chamber irradiated by natural sunlight allowed estimation of emission trends that were hard to measure in the natural snowpack. These static chamber experiments confirmed significant production of the primary alkyl halides, following the order . Our observations at all four locations, including polar and mid-latitude sites, imply that alkyl halide production may be associated with all surface snows. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
13522310
Volume :
41
Issue :
24
Database :
Academic Search Index
Journal :
Atmospheric Environment
Publication Type :
Academic Journal
Accession number :
25768992
Full Text :
https://doi.org/10.1016/j.atmosenv.2006.11.064