Back to Search Start Over

Multiple variants of the RON receptor tyrosine kinase: Biochemical properties, tumorigenic activities, and potential drug targets

Authors :
Lu, Yi
Yao, Hang-Ping
Wang, Ming-Hai
Source :
Cancer Letters. Nov2007, Vol. 257 Issue 2, p157-164. 8p.
Publication Year :
2007

Abstract

Abstract: Aberrant expression of the RON (Recepteur d’Origine Nantais) receptor tyrosine kinase, accompanied by generation of multiple splicing or truncated variants, contributes to pathogenesis of epithelial cancers. Currently, six variants including RONΔ170, Δ165, Δ160, Δ155, Δ110, and Δ55 with various deletions or truncations in the extracellular or intracellular regions have been identified. The extracellular sequences contain functional structures such as sema domain, PSI motif, and IPT units. The deletion or truncation results in constitutive phosphorylation and increased kinase activities. Oncogenic RONΔ160, generated by exclusion of the first IPT unit, is a typical example. In contrast, the deletion adjacent to the conserved MET1254 in the kinase domain converts RON into a dominant negative agent. Among three mechanisms underlying isoform production, the switch from constitutive to alternative pre-mRNA splicing is the major event in producing RON variants in cancer cells. Most of the RON variants have the ability to activate multiple signaling cascades with a different substrate specificity and phosphorylation profile. They regulate cell migration, invasion, and proliferation, which contribute to the invasive phenotype and promote the malignant progression. Thus, determining the pathogenesis of RON variants is critical in understanding the mechanisms underlying cancer initiation and progression. Targeting oncogenic signals elicited by RON or its variants by special antibody or small interfering RNA could provide a novel strategy for the treatment of malignant epithelial cancers. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03043835
Volume :
257
Issue :
2
Database :
Academic Search Index
Journal :
Cancer Letters
Publication Type :
Academic Journal
Accession number :
27052239
Full Text :
https://doi.org/10.1016/j.canlet.2007.08.007