Back to Search Start Over

Sirt1 modulates premature senescence-like phenotype in human endothelial cells

Authors :
Ota, Hidetaka
Akishita, Masahiro
Eto, Masato
Iijima, Katsuya
Kaneki, Masao
Ouchi, Yasuyoshi
Source :
Journal of Molecular & Cellular Cardiology. Nov2007, Vol. 43 Issue 5, p571-579. 9p.
Publication Year :
2007

Abstract

Abstract: Yeast Sir2 plays critical roles in gene silencing, stress resistance and longevity. Mammalian Sirt1 NAD+-dependent protein deacetylase, the closest homolog of Sir2, regulates cell cycle, cellular senescence, apoptosis and metabolism, by functional interactions with a number of biological molecules such as p53. To investigate a role of Sirt1 in endothelial dysfunction and premature senescence, we examined the effects of Sirt1 inhibition in human umbilical vein endothelial cells (HUVEC). Sirt1 inhibition by sirtinol, which is a 2-hydroxy-1-napthaldehyde derivative, or siRNA for Sirt1-induced premature senescence-like phenotype, as judged by increased senescence-associated β-galactosidase (SA-β-gal) activity, sustained growth arrest and enlarged and flattened cell morphology at 10 days after the treatment. Sixty-four percent of sirtinol (60 μmol/L)-treated HUVEC was SA-β-gal-positive, whereas only 17% of vehicle-treated cells were positive. Sirt1 inhibition by sirtinol or Sirt1 siRNA increased PAI-1 expression and decreased both protein expression and activity of eNOS. Treatment with sirtinol or Sirt1 siRNA increased acetylation of p53, while p53 expression was unaltered. Impaired epidermal growth factor-induced activation of mitogen-activated protein kinases was associated with Sirt1 inhibition-induced senescence-like growth arrest. Conversely, overexpression of Sirt1 prevented hydrogen peroxide-induced SA-β-gal activity, morphological changes and deranged expression of PAI-1 and eNOS. These results showed that Sirt1 inhibition increased p53 acetylation and induced premature senescence-like phenotype in parallel with increased PAI-1 and decreased eNOS expression. Our data suggest that Sirt1 may exert protective effects against endothelial dysfunction by preventing stress-induced premature senescence and deranged expression of PAI-1 and eNOS. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00222828
Volume :
43
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Molecular & Cellular Cardiology
Publication Type :
Academic Journal
Accession number :
27228276
Full Text :
https://doi.org/10.1016/j.yjmcc.2007.08.008