Back to Search
Start Over
Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25–28 October 2003 solar events
- Source :
-
Advances in Space Research . Nov2007, Vol. 40 Issue 12, p1827-1834. 8p. - Publication Year :
- 2007
-
Abstract
- Abstract: This study performs simulations of interplanetary coronal mass ejection (ICME) propagation in a realistic three-dimensional (3D) solar wind structure from the Sun to the Earth by using the newly developed hybrid code, HAFv.2+3DMHD. This model combines two simulation codes, Hakamada–Akasofu–Fry code version 2 (HAFv.2) and a fully 3D, time-dependent MHD simulation code. The solar wind structure is simulated out to 0.08AU (18Rs) from source surface maps using the HAFv.2 code. The outputs at 0.08AU are then used to provide inputs for the lower boundary, at that location, of the 3D MHD code to calculate solar wind and its evolution to 1AU and beyond. A dynamic disturbance, mimicking a particular flare’s energy output, is delivered to this non-uniform structure to model the evolution and interplanetary propagation of ICMEs (including their shocks). We then show the interaction between two ICMEs and the dynamic process during the overtaking of one shock by the other. The results show that both CMEs and heliosphere current sheet/plasma sheet were deformed by interacting with each other. [Copyright &y& Elsevier]
- Subjects :
- *SOLAR activity
*SOLAR wind
*STELLAR winds
*SOLAR corona
*SUN
Subjects
Details
- Language :
- English
- ISSN :
- 02731177
- Volume :
- 40
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Advances in Space Research
- Publication Type :
- Academic Journal
- Accession number :
- 27659397
- Full Text :
- https://doi.org/10.1016/j.asr.2007.06.025