Back to Search Start Over

Interaction of Electromagnetic Waves With 3-D Arbitrarily Shaped Homogeneous Chiral Targets in the Presence of a Lossy Half Space.

Authors :
Xiande Wang
Werner, Douglas H.
Le-Wei Li
Yeow-Beng Gan
Source :
IEEE Transactions on Antennas & Propagation. Dec2007, Vol. 55 Issue 12, p3647-3655. 9p.
Publication Year :
2007

Abstract

The interaction of electromagnetic waves with an arbitrarily shaped three-dimensional (3-D) homogeneous chiral object located above a lossy half space is investigated using the method of moments (MoM) via the coupled mixed potential integral equations (MPIEs). Based on the surface equivalence principle, the equivalent surface electric and magnetic currents are used to replace the homogeneous chiral target in the presence of the half space. Two coupled MPIEs are developed for the unknown equivalent surface electric and magnetic currents by utilizing the continuity condition of the tangential total electric and magnetic field components on the chiral body's surface. The well-known Galerkin procedure with Rao-Wilton-Glisson (RWG) basis functions is applied to solve this problem. The spatial domain half-space Green's functions are obtained from the corresponding spectral domain Green's functions via the discrete complex image method (DCIM) combined with the generalized-pencil of function (GPOF) technique. The reciprocity theorem is employed to calculate the far-zone scattered field. Numerical results are presented for characterizing electromagnetic scattering by a 3-D arbitrarily shaped homogenous chiral object located above a lossy half space so as to demonstrate the accuracy and efficiency of the proposed technique. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0018926X
Volume :
55
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Antennas & Propagation
Publication Type :
Academic Journal
Accession number :
27973848
Full Text :
https://doi.org/10.1109/TAP.2007.910336