Back to Search Start Over

Numerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy).

Authors :
Trasatti, E.
Giunchi, C.
Agostinetti, N. Piana
Source :
Geophysical Journal International. Feb2008, Vol. 172 Issue 2, p873-884. 12p. 1 Color Photograph, 2 Diagrams, 3 Charts, 7 Graphs.
Publication Year :
2008

Abstract

The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0956540X
Volume :
172
Issue :
2
Database :
Academic Search Index
Journal :
Geophysical Journal International
Publication Type :
Academic Journal
Accession number :
28397125
Full Text :
https://doi.org/10.1111/j.1365-246X.2007.03677.x