Back to Search
Start Over
Computational investigation and experimental considerations for the classical implementation of a full adder on SO2 by optical pump-probe schemes.
- Source :
-
Journal of Chemical Physics . 5/21/2008, Vol. 128 Issue 19, p194308. 11p. 2 Diagrams, 4 Charts, 9 Graphs. - Publication Year :
- 2008
-
Abstract
- Following the scheme recently proposed by Remacle and Levine [Phys. Rev. A 73, 033820 (2006)], we investigate the concrete implementation of a classical full adder on two electronic states (X 1A1 and C 1B2) of the SO2 molecule by optical pump-probe laser pulses using intuitive and counterintuitive (stimulated Raman adiabatic passage) excitation schemes. The resources needed for providing the inputs and reading out are discussed, as well as the conditions for achieving robustness in both the intuitive and counterintuitive pump-dump sequences. The fidelity of the scheme is analyzed with respect to experimental noise and two kinds of perturbations: The coupling to the neighboring rovibrational states and a finite rotational temperature that leads to a mixture for the initial state. It is shown that the logic processing of a full addition cycle can be realistically experimentally implemented on a picosecond time scale while the readout takes a few nanoseconds. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 128
- Issue :
- 19
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 32182609
- Full Text :
- https://doi.org/10.1063/1.2920486