Back to Search Start Over

Development of iso-octane fuel processor system for fuel cell applications

Authors :
Moon, Dong Ju
Ryu, Jong Woo
Yoo, Kye Sang
Sung, Dae Jin
Lee, Sang Deuk
Source :
Catalysis Today. Jul2008, Vol. 136 Issue 3/4, p222-227. 6p.
Publication Year :
2008

Abstract

Abstract: An iso-octane fuel processor system with three different reaction stages, autothermal reforming (ATR) reaction of iso-octane, high temperature shift (HTS) and low temperature shift (LTS) reactions, was developed for applications in a fuel cell system. Catalytic properties of the prepared Ni/Fe/MgO/Al2O3 and Pt–Ni/CeO2 or molybdenum carbide catalysts were compared to those of commercial NiO/CaO/Al2O3 and Cu/Zn/Al2O3 catalysts for ATR and LTS reaction, respectively. It was found that the prepared catalysts formulations in the fuel processor system were more active than those of the commercial catalysts. As the exit gas of iso-octane ATR over the Ni/Fe/MgO/Al2O3 catalyst was passed through Fe3O4–Cr2O3 catalyst for HTS and Mo2C or Pt–Ni/CeO2 catalyst for LTS reaction, the concentration of CO in hydrogen-rich stream was reduced to less than 2400ppm. The results suggest that the iso-octane fuel processor system with prepared catalysts can be applied to PEMFC system when a preferential partial oxidation reaction is added to KIST iso-octane reformer system. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
09205861
Volume :
136
Issue :
3/4
Database :
Academic Search Index
Journal :
Catalysis Today
Publication Type :
Academic Journal
Accession number :
32495221
Full Text :
https://doi.org/10.1016/j.cattod.2008.02.022