Back to Search Start Over

A nectar-feeding mammal avoids body fluid disturbances by varying renal function.

Authors :
Hartman Bakken, Bradley
L. Gerardo M. Herrera
Carroll, Robert M.
Ayala-Berdón, Jorge
Schondube, Jorge E.
del Rio, Carlos Martínez
Source :
American Journal of Physiology: Renal Physiology. Dec2008, Vol. 295, pF1855-F1863. 9p. 2 Charts, 3 Graphs.
Publication Year :
2008

Abstract

To maintain water and electrolyte balance, nectar-feeding vertebrates oscillate between two extremes: avoiding overhydration when feeding and preventing dehydration during fasts. Several studies have examined how birds resolve this osmoregulatory dilemma, but no data are available for nectar-feeding mammals. In this article, we 1) estimated the ability of Pallas's long-tongued bats (Glossophaga soricina; Phyllostomidae) to dilute and concentrate urine and 2) examined how water intake affected the processes that these bats use to maintain water balance. Total urine osmolality in water- and salt-loaded bats ranged between 31 ± 37 mosmol/kgH2O (n = 6) and 578 ± 56 mosmol/kgH2O (n = 2), respectively. Fractional water absorption in the gastrointestinal tract was not affected by water intake rate. As a result, water flux, body water turnover, and renal water load all increased with increasing water intake. Despite these relationships, glomerular filtration rate (GFR) was not responsive to water loading. To eliminate excess water, Pallas's long-tongued bats increased water excretion rate by reducing fractional renal water reabsorption. We also found that rates of total evaporative water loss increased with increasing water intake. During their natural daytime fast, mean GFR in Pallas's long-tongued bats was 0.37 ml/h (n = 10). This is ∼90% lower than the GFR we measured in fed bats. Our findings 1) suggest that Pallas's long-tongued bats do not have an exceptional urine-diluting or -concentrating ability and 2) demonstrate that the bats eliminate excess ingested water by reducing renal water reabsorption and limit urinary water loss during fasting periods by reducing GFR. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1931857X
Volume :
295
Database :
Academic Search Index
Journal :
American Journal of Physiology: Renal Physiology
Publication Type :
Academic Journal
Accession number :
35724927
Full Text :
https://doi.org/10.1152/ajprenal.90349.2008