Back to Search
Start Over
Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan.
- Source :
-
International Journal of Biometeorology . Mar2009, Vol. 53 Issue 2, p189-200. 12p. - Publication Year :
- 2009
-
Abstract
- Abstract  Divergence in the acceptability to people in different regions of naturally ventilated thermal environments raises a concern over the extent to which the ASHRAE Standard 55 may be applied as a universal criterion of thermal comfort. In this study, the ASHRAE 55 adaptive model of thermal comfort was investigated for its applicability to a hot and humid climate through a long-term field survey performed in central Taiwan among local students attending 14 elementary and high schools during September to January. Adaptive behaviors, thermal neutrality, and thermal comfort zones are explored. A probit analysis of thermal acceptability responses from students was performed in place of the conventional linear regression of thermal sensation votes against operative temperature to investigate the limits of comfort zones for 90% and 80% acceptability; the corresponding comfort zones were found to occur at 20.1–28.4°C and 17.6–30.0°C, respectively. In comparison with the yearly comfort zones recommended by the adaptive model for naturally ventilated spaces in the ASHRAE Standard 55, those observed in this study differ in the lower limit for 80% acceptability, with the observed level being 1.7°C lower than the ASHRAE-recommended value. These findings can be generalized to the population of school children, thus providing information that can supplement ASHRAE Standard 55 in evaluating the thermal performance of naturally ventilated school buildings, particularly in hot-humid areas such as Taiwan. [ABSTRACT FROM AUTHOR]
- Subjects :
- *VENTILATION
*AERODYNAMICS of buildings
*SCHOOL buildings
Subjects
Details
- Language :
- English
- ISSN :
- 00207128
- Volume :
- 53
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- International Journal of Biometeorology
- Publication Type :
- Academic Journal
- Accession number :
- 36526268
- Full Text :
- https://doi.org/10.1007/s00484-008-0203-2