Back to Search Start Over

Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei

Authors :
Nagendran, Subashini
Hallen-Adams, Heather E.
Paper, Janet M.
Aslam, Nighat
Walton, Jonathan D.
Source :
Fungal Genetics & Biology. May2009, Vol. 46 Issue 5, p427-435. 9p.
Publication Year :
2009

Abstract

Abstract: Based on the analysis of its genome sequence, the ectomycorrhizal (ECM) basidiomycetous fungus Laccaria bicolor was shown to be lacking many of the major classes of secreted enzymes that depolymerize plant cell wall polysaccharides. To test whether this is also a feature of other ECM fungi, we searched a survey genome database of Amanita bisporigera with the proteins found in the secretome of Trichoderma reesei (syn. Hypocrea jecorina), a biochemically well-characterized industrial fungus. Additional proteins were also used as queries to compensate for major groups of cell-wall-degrading enzymes lacking in the secretome of T. reesei and to substantiate conclusions drawn from the T. reesei collection. By MS/MS-based “shotgun” proteomics, 80 proteins were identified in culture filtrates of T. reesei strain RUTC30 grown on corn cell walls and in a commercial “cellulase” preparation, Spezyme CP. The two T. reesei enzyme preparations were qualitatively and quantitatively similar, the most striking difference being the lack of at least five major peptidases from the commercial enzyme mixture. Based on our analysis of A. bisporigera, this ECM fungus is deficient in many major classes of cell-wall-degrading enzymes, including both glycosyl hydrolases and carbohydrate esterases. By comparison, the genomes of the saprophytic basidiomycetes Coprinopsis cinerea and Galerina marginata (using a genome survey sequence approximately equivalent in depth to that of A. bisporigera) have, like T. reesei, a much more complete complement of cell-wall-degrading enzymes. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
10871845
Volume :
46
Issue :
5
Database :
Academic Search Index
Journal :
Fungal Genetics & Biology
Publication Type :
Academic Journal
Accession number :
37571318
Full Text :
https://doi.org/10.1016/j.fgb.2009.02.001