Back to Search Start Over

ON A CERTAIN CLASS OF SUBMEASURES BASED ON TRIANGULAR NORMS.

Authors :
HUTNÍK, ONDREJ
MESIAR, RADKO
Source :
International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems. Jun2009, Vol. 17 Issue 3, p297-316. 20p.
Publication Year :
2009

Abstract

In this paper we study a generalization of a submeasure notion which is related to a probabilistic concept, especially to Menger spaces where triangular norms play a crucial role. The resulting notion of a τT-submeasure is suitable for modeling those situations in which we have only probabilistic information about the measure of the set. We characterize a class of universal τT-submeasures (i.e., τT-submeasures for an arbitrary t-norm T) and give explicit formulas for τT-submeasures for some classes of t-norms. Also, transformations and aggregations of τT-submeasures are discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02184885
Volume :
17
Issue :
3
Database :
Academic Search Index
Journal :
International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems
Publication Type :
Academic Journal
Accession number :
41133102
Full Text :
https://doi.org/10.1142/S0218488509005887