Back to Search Start Over

EDGE-DISJOINT PATHS IN PLANAR GRAPHS WITH CONSTANT CONGESTION.

Authors :
CHEKURI, CHANDRA
KHANNA, SANJEEV
SHEPHERD, F. BRUCE
Source :
SIAM Journal on Computing. 2009, Vol. 39 Issue 1, p281-301. 21p. 7 Diagrams.
Publication Year :
2009

Abstract

We study the maximum edge-disjoint paths problem in undirected planar graphs: given a graph G and node pairs (demands) s1t1, s2t2, … , sktk, the goal is to maximize the number of demands that can be connected (routed) by edge-disjoint paths. The natural multicommodity flow relaxation has an Ω(√n) integrality gap, where n is the number of nodes in G. Motivated by this, we consider solutions with small constant congestion c > 1, that is, solutions in which up to c paths are allowed to use an edge (alternatively, each edge has a capacity of c). In previous work we obtained an O(log n) approximation with congestion 2 via the flow relaxation. This was based on a method of decomposing into well-linked subproblems. In this paper we obtain an O(1) approximation with congestion 4. To obtain this improvement we develop an alternative decomposition that is specific to planar graphs. The decomposition produces instances that we call Okamura-Seymour (OS) instances. These have the property that all terminals lie on a single face. Another ingredient we develop is a constant factor approximation for the all-or-nothing flow problem on OS instances via the flow relaxation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00975397
Volume :
39
Issue :
1
Database :
Academic Search Index
Journal :
SIAM Journal on Computing
Publication Type :
Academic Journal
Accession number :
42637128
Full Text :
https://doi.org/10.1137/060674442