Back to Search Start Over

Atmospheric carbon dioxide through the Eocene–Oligocene climate transition.

Authors :
Pearson, Paul N.
Foster, Gavin L.
Wade, Bridget S.
Source :
Nature. 10/22/2009, Vol. 461 Issue 7267, p1110-1113. 4p. 3 Graphs.
Publication Year :
2009

Abstract

Geological and geochemical evidence indicates that the Antarctic ice sheet formed during the Eocene–Oligocene transition, 33.5–34.0 million years ago. Modelling studies suggest that such ice-sheet formation might have been triggered when atmospheric carbon dioxide levels () fell below a critical threshold of ∼750 p.p.m.v., but the timing and magnitude of relative to the evolution of the ice sheet has remained unclear. Here we use the boron isotope pH proxy on exceptionally well-preserved carbonate microfossils from a recently discovered geological section in Tanzania to estimate before, during and after the climate transition. Our data suggest that a reduction in occurred before the main phase of ice growth, followed by a sharp recovery to pre-transition values and then a more gradual decline. During maximum ice-sheet growth, was between ∼450 and ∼1,500 p.p.m.v., with a central estimate of ∼760 p.p.m.v. The ice cap survived the period of recovery, although possibly with some reduction in its volume, implying (as models predict) a nonlinear response to climate forcing during melting. Overall, our results confirm the central role of declining in the development of the Antarctic ice sheet (in broad agreement with carbon cycle modelling) and help to constrain mechanisms and feedbacks associated with the Earth’s biggest climate switch of the past 65 Myr. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00280836
Volume :
461
Issue :
7267
Database :
Academic Search Index
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
44733503
Full Text :
https://doi.org/10.1038/nature08447