Back to Search Start Over

Barrier To Linearity and Anharmonic Force Field of the Ketenyl Radicalâ€.

Authors :
Andrew C. Simmonett
Nathan J. Stibrich
Brian N. Papas
Henry F. Schaefer
Wesley D. Allen
Source :
Journal of Physical Chemistry A. Oct2009, Vol. 113 Issue 43, p11643-11650. 8p.
Publication Year :
2009

Abstract

The troublesome barrier to linearity of the ketenyl radical (HCCO) is precisely determined using state-of-the-art computations within the focal point approach, by combining complete basis set extrapolation, utilizing the aug-cc-pVXZ (X= D, T, Q, 5, 6) family of basis sets, with electron correlation treatments as extensive as coupled cluster theory with single, double, triple, and perturbative quadruple excitations [CCSDT(Q)]. Auxiliary terms such as diagonal Born−Oppenheimer corrections (DBOCs) and relativistic contributions are included. To gain a definitive theoretical treatment and to assess the effect of higher-order correlation on the structure of HCCO, we employ a composite approximation (c∼) to all-electron (AE) CCSDT(Q) theory at the complete basis set (CBS) limit for geometry optimizations. A final classical barrier to linearity of 630 ± 30 cm−1is obtained for reaching the 2Π Renner−Teller configuration of HCCO from the 2A′′ ground state. Additionally, we compute fundamental vibrational frequencies and other spectroscopic constants by application of second-order vibrational perturbation theory (VPT2) to the full quartic force field at the AE-CCSD(T)/aug-cc-pCVQZ level. The resulting (ν1, ν2, ν5) fundamental frequencies of (3212, 2025, 483) cm−1agree satisfactorily with the experimental values (3232, 2023, 494) cm−1. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10895639
Volume :
113
Issue :
43
Database :
Academic Search Index
Journal :
Journal of Physical Chemistry A
Publication Type :
Academic Journal
Accession number :
44864414
Full Text :
https://doi.org/10.1021/jp9024365