Back to Search Start Over

Theta burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex.

Authors :
Trippe, Jörn
Mix, Annika
Aydin-Abidin, Selcen
Funke, Klaus
Benali, Alia
Source :
Experimental Brain Research. Dec2009, Vol. 199 Issue 3/4, p411-421. 11p. 1 Black and White Photograph, 2 Charts, 4 Graphs.
Publication Year :
2009

Abstract

Modified cortical excitability following repetitive transcranial magnetic stimulation (rTMS) may be related to short- or long-term synaptic plasticity of neuronal excitation but could also affect cortical inhibition. Therefore, in the rat we tested how three different rTMS protocols, intermittent and continuous theta-burst (iTBS, cTBS), and low-frequency 1 Hz stimulation, change the expression of GAD65, GAD67 and GAT-1 which are expressed in cortical inhibitory interneurons in an activity-dependent manner. Acutely (2 h), all protocols reduced the expression of GAD67 in frontal, motor, somatosensory and visual cortex but increased that of GAD65 and GAT-1 to different degree, with iTBS having the strongest acute effect. The initial decrease in GAD67 reversed after 1 day, leading to a strong increase in GAD67 expression for up to 7 days primarily in the frontal cortex in case of iTBS, cTBS and in all studied areas following 1 Hz rTMS. While also GAD65 and GAT-1 expression reversed after 1 day in case of iTBS and cTBS, 1 Hz rTMS induced a steady increase in GAD65 and GAT-1 expression during the 7 days investigated. Our data demonstrate that rTMS affects the expression of activity-dependent proteins of the cortical inhibitory interneurons. Besides common effects of low- (1 Hz) and high-frequency (TBS) stimulation on protein expression, differences in quantity and time course of changes point to differences in the contribution of possible neuronal subsystems. Further studies are needed to distinguish cell-type specific effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00144819
Volume :
199
Issue :
3/4
Database :
Academic Search Index
Journal :
Experimental Brain Research
Publication Type :
Academic Journal
Accession number :
45391149
Full Text :
https://doi.org/10.1007/s00221-009-1961-8