Back to Search Start Over

Electrical properties of shallow p[sup +]-n junction using boron-doped Si[sub 1-x]Ge[sub x] layer deposited by ultrahigh vacuum chemical molecular epitaxy.

Authors :
Huang, Hsiang-Jen
Chen, Kun-Ming
Chang, Chun-Yen
Chao, Tien-Sheng
Huang, Tiao Yuan
Source :
Journal of Applied Physics. 5/1/2001, Vol. 89 Issue 9, p5133. 5p. 9 Graphs.
Publication Year :
2001

Abstract

Strained boron-doped Si[sub 1-x]Ge[sub x] layers with different Ge mole fractions were selectively deposited by ultrahigh vacuum chemical molecular epitaxy to form shallow p[sup +]-n junction suitable for raised source/drain metal-oxide-semiconductor field effect transistor applications. Detailed electrical characterizations were performed. Our results show that the reverse leakage current could be optimized by a rapid thermal annealing at 950 °C for 20 s, and a near perfect forward ideality factor (i.e., <1.01) is obtained for the p[sup +]-n Si[sub 1-x]Ge[sub x]/Si junction. By analyzing the periphery and area leakage current components of p[sup +]-n Si[sub 1-x]Ge[sub x]/Si junctions with various perimeter lengths and areas, the degree of misfit dislocations and undercut effect were studied. The specific contact resistance was found to decrease as Ge mole fraction increases. Junction depth measurements also show that the junction depth decreases monotonically with increasing Ge mole fraction. The reduced B diffusion constant is attributed to the increasing Ge gradient in the transition region. © 2001 American Institute of Physics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
89
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
4712643
Full Text :
https://doi.org/10.1063/1.1321022