Back to Search Start Over

Equilibrium shapes of rubble-pile binaries: The Darwin ellipsoids for gravitationally held granular aggregates

Authors :
Sharma, Ishan
Source :
ICARUS. Feb2010, Vol. 205 Issue 2, p638-657. 20p.
Publication Year :
2010

Abstract

Abstract: Binaries are in vogue; many minor-planets like asteroids are being found to be binary or contact-binary systems. Even ternaries like 87 Sylvia have been discovered. The densities of these binaries are often estimated to be very low, and this, along with suspected accretionary origins, hints at a rubble interior. As in the case of fluid objects, a rubble-pile is unable to sustain all manners of spin, self-gravitation, and tidal interactions. This motivates the present study of the possible ellipsoidal shapes and mutual separations that members of a rubble-pile binary system may achieve. Conversely, knowledge of a granular binary’s shape and separation will constrain its internal structure – the ability of the binary’s members to sustain elongated shapes and/or maintain contact will hint at appreciable internal frictional strength. Because the binary’s members are allowed to be of comparable mass, the present investigation constitutes an extension of the second classical Darwin problem to granular aggregates. General equations defining the ellipsoidal rubble-pile binary system’s equilibrium are developed. These are then specialized to a pair of spin-locked, possibly unequal, prolate ellipsoidal granular aggregates aligned along their long axes. We observe that contact rubble-pile binaries can indeed exist. Further, depending on the binary’s geometry, an equilibrium contact binary’s members may, in fact, disrupt if separated. These results are applied to four suspected or known binaries: 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope. This exercise helps to bound the shapes and/or provide information about the interiors of these binaries. The binary’s interior will be modeled as a rigid-plastic, cohesionless material with a Drucker–Prager yield criterion. This rheology is a reasonable first model for rubble piles. We employ an approximate volume-averaging procedure that is based on the classical method of moments, and is an extension of the virial method (Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven, CT) to granular solid bodies. The present approach also helps us present an incrementally consistent approach to investigate the equilibrium shapes of fluid binaries, while highlighting the inconsistencies and errors inherent in the popular “Roche binary approximation”. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00191035
Volume :
205
Issue :
2
Database :
Academic Search Index
Journal :
ICARUS
Publication Type :
Academic Journal
Accession number :
47832552
Full Text :
https://doi.org/10.1016/j.icarus.2009.08.018