Back to Search Start Over

L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis.

Authors :
Chen-Chi Wu
Prashant Singh
Mao-Chuain Chen
Zimmerli, Laurent
Source :
Journal of Experimental Botany. Apr2010, Vol. 61 Issue 4, p995-1002. 8p. 6 Color Photographs, 6 Graphs.
Publication Year :
2010

Abstract

The non-protein amino acid beta-aminobutyric acid (BABA) enhances Arabidopsis resistance to microbial pathogens and abiotic stresses through potentiation of the Arabidopsis defence responses. In this study, it is shown that BABA induces the stress-induced morphogenic response (SIMR). SIMR is observed in plants exposed to sub-lethal stress conditions. Anthocyanin, a known modulator of stress signalling, was also found to accumulate in BABA-treated Arabidopsis. These data and a previous microarray study indicate that BABA induces a stress response in Arabidopsis. High concentrations of amino acids, except for L-glutamine, cause a general amino acid stress inhibition. General amino acid inhibition is prevented by the addition of L-glutamine. L-Glutamine was found to inhibit the BABA-mediated SIMR and anthocyanin accumulation, suggesting that the non-protein amino acid BABA causes a general amino acid stress inhibition in Arabidopsis. L-Glutamine also blocked BABA-induced resistance to heat stress and to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. During bacterial infection, priming of the salicylic acid-dependent defence marker PR1 was abolished by L-glutamine treatment. These results indicate that L-glutamine removal of the BABA-mediated stress response is concomitant with L-glutamine inhibition of BABA priming and BABA-induced resistance. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00220957
Volume :
61
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Experimental Botany
Publication Type :
Academic Journal
Accession number :
48732705
Full Text :
https://doi.org/10.1093/jxb/erp363