Back to Search Start Over

Analysis and Design of a High-Efficiency Full-Bridge Single-Stage Converter With Reduced Auxiliary Components.

Authors :
Ribeiro, Hugo Santos
Borges, Beatriz Vieira
Source :
IEEE Transactions on Power Electronics. Jul2010, Vol. 25 Issue 7, p1850-1862. 13p.
Publication Year :
2010

Abstract

This paper presents a single-stage circuit topology consisting of the association of a full-bridge isolated dc-dc converter and two input inductors and two input diodes connected to the mains network, in order to obtain an isolated ac/dc switch mode power supply, with sinusoidal input current. The proposed topology does not use an input bridge rectifier, common in similar applications. The current in the two input inductors can, therefore, flow in both directions. Consequently, the proposed topology equally distributes the current by the four-bridge transistors that provide four input parallel boost power factor correctors (PFCs). The use of the four-bridge transistors to obtain the PFC function and regulate the output voltage with galvanic isolation is a new technique that makes this topology unique, which also contributes to improve the converter efficiency. The definition of appropriate control strategies permitting the accurate simultaneous regulation of output voltage and input current is hereby described. The interdependency between these two conversion processes is completely analysed, allowing for useful design rules. Experimental results were obtained in a 650-W laboratory prototype to verify the theoretical study. A maximum efficiency of 94% was obtained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858993
Volume :
25
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Power Electronics
Publication Type :
Academic Journal
Accession number :
51907951
Full Text :
https://doi.org/10.1109/TPEL.2010.2042970