Back to Search Start Over

The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1 Peter R. Ryan et al. Evolution of aluminium resistance in wheat.

Authors :
Ryan, Peter R.
Raman, Harsh
Gupta, Sanjay
Sasaki, Takayuki
Yamamoto, Yoko
Delhaize, Emmanuel
Source :
Plant Journal. Nov2010, Vol. 64 Issue 3, p446-455. 10p. 1 Diagram, 1 Chart, 4 Graphs.
Publication Year :
2010

Abstract

Acid soils limit plant production worldwide because their high concentrations of soluble aluminium cations (Al) inhibit root growth. Major food crops such as wheat ( Triticum aestivum L.) have evolved mechanisms to resist Al toxicity, thus enabling wider distribution. The origins of Al resistance in wheat are perplexing because all progenitors of this hexaploid species are reportedly sensitive to Al stress. The large genotypic variation for Al resistance in wheat is largely controlled by expression of an anion channel, TaALMT1, which releases malate anions from the root apices. A current hypothesis proposes that the malate anions protect this sensitive growth zone by binding to Al in the apoplasm. We investigated the evolution of this trait in wheat, and demonstrated that it has multiple independent origins that enhance Al resistance by increasing TaALMT1 expression. One origin is likely to be Aegilops tauschii while other origins occurred more recently from a series of cis mutations that have generated tandemly repeated elements in the TaALMT1 promoter. We generated transgenic plants to directly compare these promoter alleles and demonstrate that the tandemly repeated elements act to enhance gene expression. This study provides an example from higher eukaryotes in which perfect tandem repeats are linked with transcriptional regulation and phenotypic change in the context of evolutionary adaptation to a major abiotic stress. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09607412
Volume :
64
Issue :
3
Database :
Academic Search Index
Journal :
Plant Journal
Publication Type :
Academic Journal
Accession number :
54623705
Full Text :
https://doi.org/10.1111/j.1365-313X.2010.04338.x