Back to Search
Start Over
C-Peptide and Its C-Terminal Fragments Improve Erythrocyte Deformability in Type 1 Diabetes Patients.
- Source :
-
Experimental Diabetes Research . 2009, Special section p1-6. 6p. 3 Charts, 2 Graphs. - Publication Year :
- 2009
-
Abstract
- Aims/hypothesis. Data now indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. This study aimed to investigate the influence of C-peptide and fragments thereof on erythrocyte deformability and to elucidate the relevant signal transduction pathway. Methods. Blood samples from 23 patients with type 1 diabetes and 15 matched healthy controls were incubated with 6.6 nM of either human C-peptide, C-terminal hexapeptide, C-terminal pentapeptide, a middle fragment comprising residues 11-19 of C-peptide, or randomly scrambled Cpeptide. Furthermore, red blood cells from 7 patients were incubated with C-peptide, penta- and hexapeptides with/without addition of ouabain, EDTA, or pertussis toxin. Erythrocyte deformability was measured using a laser diffractoscope in the shear stress range 0.3-60 Pa. Results. Erythrocyte deformability was impaired by 18-25% in type 1 diabetic patients compared to-matched controls in the physiological shear stress range 0.6-12 Pa (P < .01-.001). C-peptide, penta- and hexapeptide all significantly improved the impaired erythrocyte deformability of type 1 diabetic patients, while the middle fragment and scrambled C-peptide had no detectable effect. Treatment of erythrocytes with ouabain or EDTA completely abolished the C-peptide, penta-and hexapeptide effects. Pertussis toxin in itself significantly increased erythrocyte deformability. Conclusion/interpretation. C-peptide and its C-terminal fragments are equally effective in improving erythrocyte deformability in type 1 diabetes. The C-terminal residues of C-peptide are causally involved in this effect. The signal transduction pathway is Ca2+-dependent and involves activation of red blood cell Na+,K+-ATPase. [ABSTRACT FROM AUTHOR]
- Subjects :
- *DIABETES
*PROINSULIN
*C-peptide
*PEPTIDE hormones
*ERYTHROCYTE deformability
Subjects
Details
- Language :
- English
- ISSN :
- 16875214
- Database :
- Academic Search Index
- Journal :
- Experimental Diabetes Research
- Publication Type :
- Academic Journal
- Accession number :
- 55197731
- Full Text :
- https://doi.org/10.1155/2008/730594