Back to Search Start Over

Modulating and modeling aggregation of cell-seeded microcarriers in stirred culture system for macrotissue engineering

Authors :
Mei, Yang
Luo, Houyong
Tang, Qiang
Ye, Zhaoyang
Zhou, Yan
Tan, Wen-Song
Source :
Journal of Biotechnology. Nov2010, Vol. 150 Issue 3, p438-446. 9p.
Publication Year :
2010

Abstract

Abstract: A recently developed protocol, “microtissue assembly” holds great promise to address the issue of limited mass transfer within engineered large tissue replacements (macrotissues), wherein small “building blocks” (microtissues) are prepared and then assembled into macrotissues. Previous studies suggested that aggregation behavior of microcarrier-based microtissues were very important for macrotissue engineering. However, a systematic study on the aggregation behavior of microtissues is still missing. In this study, to examine the aggregation behavior of microtissues, effects of key operation parameters in dynamic culture including cell seeding density, microcarrier concentration, l-ascorbic acid 2-phosphate (V c) and agitating speed were investigated. The aggregation process could be divided into three phases (i.e., lag, growth and stable). Aggregation efficiency (S) was found to be modulated by cell seeding density, microcarrier concentration, addition of V c and agitating speed. A mathematical model correlating the operation parameters with S at different phases of aggregation was developed and experimentally proved to be able to predict S with varied operation parameters. In the end, a cylindrical macrotissue (diameter×height: 2.0cm×0.8cm) with fairly good integrity and cellularity and uniform cell distribution was successfully engineered through perfusion assembling microtissues with controlled S under selected culture conditions. Our study showed that aggregation of microtissues could be precisely modulated, which would definitely facilitate engineering macrotissues with high quality. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01681656
Volume :
150
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Biotechnology
Publication Type :
Academic Journal
Accession number :
55209870
Full Text :
https://doi.org/10.1016/j.jbiotec.2010.09.953