Back to Search Start Over

Increased spinal prodynorphin gene expression in reinflammation-associated hyperalgesia after neonatal inflammatory insult.

Authors :
Jack Yu-Shih Lin
Yu-Che Cheng
Julia Yi-Ru Chen
Chih-Cheng Chien
Shih-Chang Lin
Yeong-Ray Wen
Tsung-Shan Tsou
Qing-Dong Ling
Source :
BMC Neuroscience. 2010, Vol. 11, p139-147. 9p.
Publication Year :
2010

Abstract

Background: Neuroplasticity induced by neonatal inflammation is the consequence of a combination of activity-dependent changes in neurons. We investigated neuronal sensitivity to a noxious stimulus in a rat model of neonatal hind-paw peripheral inflammation and assessed changes in pain behaviour at the physiological and molecular levels after peripheral reinflammation in adulthood. Results: A decrease in paw withdrawal latency (PWL) after a heat stimulus was documented in rats that received inflammatory injections in their left hind paws on postnatal day one (P1) and a reinflammation stimulus at postnatal 6-8 weeks of age, compared with normal rats. An increase in the expression of the prodynorphin (proDYN) gene was noted after reinflammation in the spinal cord ipsilateral to the afferents of the neonatally treated hind paw. The involvement of the activation of extracellular signal-regulated kinases (ERK) in peripheral inflammatory pain hypersensitivity was evidenced evident by the increase in phospho-ERK (pERK) activity after reinflammation. Conclusions: Our results indicate that peripheral inflammation in neonates can permanently alter the pain processing pathway during the subsequent sensory stimulation of the region. Elucidation of the mechanism underlying the developing pain circuitry will provide new insights into the understanding of the early pain behaviours and the subsequent adaptation to pain. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712202
Volume :
11
Database :
Academic Search Index
Journal :
BMC Neuroscience
Publication Type :
Academic Journal
Accession number :
55539420
Full Text :
https://doi.org/10.1186/1471-2202-11-139