Back to Search Start Over

Double Reaction-induced Microphase Separation in Epoxy Resin Containing Polystyrene-block-poly(ε-caprolactone)-block-poly(n-butyl acrylate) ABC Triblock Copolymer.

Authors :
Wenchun Fan
Lei Wang
Sixun Zheng
Source :
Macromolecules. Dec2010, Vol. 43 Issue 24, p10600-10611. 12p.
Publication Year :
2010

Abstract

Polystyrene-block-poly(ε-caprolactone)-block-poly(n-butyl acrylate) (PS-b-PCL-b-PBA) triblock copolymer was synthesized through the combination of atom transfer radical polymerization, copper-catalyzed Huisgen 1,3-dipolar cycloaddition and ring-opening polymerization. The PS-b-PCL-b-PBA ABC triblock copolymer was incorporated into epoxy to access the nanostructures in the thermoset. The microphase-separated morphology was investigated by means of atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and dynamic mechanical thermal analysis (DMTA). It was found that depending on the concentration of the triblock copolymer in the thermosets several kinds of nanodomains were formed and they were arranged in lamellar lattice. The formation of the nanostructures was ascribed to the tandem reaction-induced microphase separation of PBA and PS blocks in the thermosetting blends. The investigation of the model binary thermosetting blends showed that the phase separation of PBA occurred at the conversion much lower than that of PS. It is proposed that the PBA nanophases were formed prior to the PS nanophases in the thermosetting blends and the microdomains of PBA subchains could behave as the template for the demixing of PS blocks. The coupling of the two-stage reaction-induced microphase separation exerted a profound impact on the formation of nanostructures in the epoxy thermosets containing the ABC triblock copolymer. Thermal analysis shows that with the formation of the nanostructures in the thermosets a part of poly(ε-caprolactone) subchains were demixed from epoxy matrix; the fractions of demixed PCL blocks have been estimated according to the Tg-composition relation of the model binary blends of epoxy and PCL. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00249297
Volume :
43
Issue :
24
Database :
Academic Search Index
Journal :
Macromolecules
Publication Type :
Academic Journal
Accession number :
57142382
Full Text :
https://doi.org/10.1021/ma101945f