Back to Search Start Over

Rate Scaling Laws in Multicell Networks Under Distributed Power Control and User Scheduling.

Authors :
Gesbert, David
Kountouris, Marios
Source :
IEEE Transactions on Information Theory. 01/01/2011, Vol. 57 Issue 1, p234-244. 11p.
Publication Year :
2011

Abstract

We analyze the sum rate performance in multicell single-hop networks where access points are allowed to cooperate in terms of a joint resource allocation. The resource allocation policies considered here combine power control and user scheduling. Although promising from a conceptual point of view, the optimization of the sum of per-link rates hinges on tough issues such as computational complexity and the requirement for heavy receiver-to-transmitter and cell-to-cell channel information feedback. In this paper, however, we show that simple distributed algorithms can scale optimally in terms of rates, when the number of users per cell U is allowed to grow large. We use extreme value theory to provide scaling laws for upper and lower bounds for the network sum-rate (sum of single user rates over all cells), corresponding to zero-interference and worst-case interference scenarios. We show that the scaling is either dominated by path loss statistics or by small-scale fading, depending on the regime and user location scenario. A surprising result is that the well known \log \log U rate behavior exhibited in i.i.d. fading channels with maximum rate schedulers is transformed into a \log U behavior when path loss is accounted for. Additionally, by showing that upper and lower rate bounds behave in fact identically, asymptotically, our results suggest, remarkably, that the impact of multicell interference on the rate (in terms of scaling) actually vanishes asymptotically, when appropriate resource allocation policies are used. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189448
Volume :
57
Issue :
1
Database :
Academic Search Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
57253981
Full Text :
https://doi.org/10.1109/TIT.2010.2090195