Back to Search Start Over

FPGA-Based Spread-Spectrum Schemes for Conducted-Noise Mitigation in DC–DC Power Converters: Design, Implementation, and Experimental Investigation.

Authors :
Dousoky, Gamal M.
Shoyama, Masahito
Ninomiya, Tamotsu
Source :
IEEE Transactions on Industrial Electronics. 02/01/2011, Vol. 58 Issue 2, p429-435. 7p.
Publication Year :
2011

Abstract

This paper proposes a family of spread-spectrum schemes, several of which are new, for conducted-noise reduction in dc–dc converters. The schemes use three randomized parameters to generate the switching signals: carrier frequency, duty ratio, and pulse position. The increasing performance and cost reduction of field-programmable gate array (FPGA) technology have made the application of these schemes possible in this field. A theoretical framework for a general representative scheme is provided. Then, the proposed schemes are designed and implemented using an FPGA-based controller. Furthermore, the effect of using the proposed controller on common-mode, differential-mode, and total conducted-noise characteristics of the dc–dc converter is experimentally investigated. In addition, the three randomization parameters are swept to determine the values that best achieve the conducted-noise spectrum spread. All studied cases are designed, implemented, and experimentally investigated. Then, the conducted-noise spectra are compared. The experimental results show that the use of the proposed controller with the determined randomization values significantly improves the conducted-noise spectrum and effectively reduces the noise peaks at both high- and low-frequency ranges. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
58
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
57330972
Full Text :
https://doi.org/10.1109/TIE.2010.2049708