Back to Search Start Over

Homocysteine induces smooth muscle cell proliferation through differential regulation of cyclins A and D1 expression.

Authors :
Chiang, Jui-Kun
Sung, Mao-Lin
Yu, Hong-Ren
Chang, Hsin-I
Kuo, Hsing-Chun
Tsai, Tzung-Chieh
Yen, Chia-Kuang
Chen, Cheng-Nan
Source :
Journal of Cellular Physiology. Apr2011, Vol. 226 Issue 4, p1017-1026. 10p.
Publication Year :
2011

Abstract

The mechanism of homocysteine-induced cell proliferation in human vascular smooth muscle cells (SMCs) remains unclear. We investigated the molecular mechanisms by which homocysteine affects the expression of cyclins A and D1 in human umbilical artery SMCs (HUASMCs). Homocysteine treatment induced proliferation of HUASMCs and increased the expression levels of cyclins A and D1. Knocking down either cyclin A or cyclin D1 by small interfering RNA (siRNA) inhibited homocysteine-induced cell proliferation. Furthermore, treatment with extracellular signal-related kinase (ERK) inhibitor (PD98059) and dominant negative Ras (RasN17) abolished homocysteine-induced cyclin A expression; and treatment with phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin) attenuated the homocysteine-induced cyclin D1 expression. Homocysteine also induced transient phosphorylation of ERK, Akt, and p70 ribosomal S6 kinase (p70S6K). Neutralizing antibody and siRNA for β1 integrin blocked cell proliferation, expression of cyclins A and D1, and phosphorylation of ERK and Akt. In conclusion, homocysteine-induced differential activation of Ras/ERK and PI3K/Akt/p70S6K signaling pathways and consequent expression of cyclins A and D1 are dependent on β1 integrin. Homocysteine may accelerate progression of atherosclerotic lesions by promoting SMC proliferation. J. Cell. Physiol. 226: 1017-1026, 2011. © 2010 Wiley-Liss, Inc. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219541
Volume :
226
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Cellular Physiology
Publication Type :
Academic Journal
Accession number :
57540620
Full Text :
https://doi.org/10.1002/jcp.22415