Back to Search Start Over

Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells.

Authors :
Yen-Ju Cheng
Fong-Yi Cao
Wei-Cheng Lin
Chiu-Hsiang Chen
Chao-Hsiang Hsieh
Source :
Chemistry of Materials. Mar2011, Vol. 23 Issue 6, p1512-1518. 7p.
Publication Year :
2011

Abstract

We have successfully designed and synthesized two oxetane-functionalized fullerene derivatives, [6,6]-phenyl-C61-butyric oxetane ester (PCBO) and [6,6]-phenyl-C61-butyric oxetane dendron ester (PCBOD). We demonstrated that the oxetane functionality with neutral nature can anchor onto the TiOxsurface via cationic ring-opening reaction under thermal and UV treatment, as evidenced by contact angle measurement and X-ray photoelectron spectroscopy. The self-assembly of PCBO, functionalized with one oxetane group, on the TiOxsurface forms an adhesive monolayer with intimate contact. Inverted bulk-heterojunction device B [ITO/TiOx/SA-PCBO/P3HT:PCBM (1:1 w/w)/MoO3/Ag, where ITO is indium tin oxide, SA is self-assembled, P3HT is poly(3-hexylthiophene), and PCBM is [6,6]-phenyl-C61-butyric acid methyl ester] with this self-assembled PCBO (SA-PCBO) modifier showed an impressive power conversion efficiency (PCE) of 4.1%, which outperforms the reference device A (PCE = 3.6%) without this monolayer [ITO/TiOx/P3HT:PCBM (1:1 w/w)/MoO3/Ag]. This SA-PCBO modifier exerts multipositive effects on the interface, including improvement of exciton dissociation efficiency, reduction of charge recombination, decrease of the interface contact resistance, and passivation of the surface electron traps at the interface of TiOx. Furthermore, PCBOD, containing two oxetane groups, is capable of self-assembling on the TiOxsurface and simultaneously undergoing cross-linking, generating a dense, robust, and pinhole-free multimolecular interlayer to further strengthen the interface characteristics. Device C [ITO/TiOx/C-PCBOD/P3HT:PCBM(1:1, in wt%)/MoO3/Ag] incorporating this cross-linked PCBOD (C-PCBOD) interlayer delivered the highest PCE of 4.5% which represents 26% enhancement over device A. This simple and easy strategy smartly integrates the advantages of self-assembly and cross-linking in a single fullerene-based molecule, showing promise in producing highly efficient inverted PSCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08974756
Volume :
23
Issue :
6
Database :
Academic Search Index
Journal :
Chemistry of Materials
Publication Type :
Academic Journal
Accession number :
59345007
Full Text :
https://doi.org/10.1021/cm1032404