Back to Search Start Over

Probing the Adsorption Characteristic of Metal--Organic Framework MIL-101 for Volatile Organic Compounds by Quartz Crystal Microbalance.

Authors :
Chan-Yuan Huang
Ming Song
Zhi-Yuan Gu
He-Fang Wang
Xiu-Ping Yan
Source :
Environmental Science & Technology. 5/15/2011, Vol. 45 Issue 10, p4490-4496. 7p.
Publication Year :
2011

Abstract

As volatile organic compounds (VOCs) are a major group of air pollutants, development of materials for efficient adsorption and removal of VOCs is of great significance in both environmental and analytical sciences. Here we report metal-organic frameworks (MOFs) MIL-101 for the effective adsorption of VOCs at atmospheric pressure. A simple device was designed for quartz crystal microbalance (QCM), and six VOCs with various functional groups and polarities, i.e., n-hexane, toluene, methanol, butanone, dichloromethane, and n-butylamine, were chosen as targets to probe the adsorption properties of MIL-101. The developed device allows measurement of the adsorption isotherms and monitoring of the dynamic process for the adsorption of VOCs on MOFs, and also provides a useful tool for characterization of MOFs. The adsorption isotherms of the VOCs on MIL-101 followed the Dubinin-Astakhov equation with the characteristic energy from 5.70 (methanol) to 9.13 kJ mol-1 (n-butylamine), Astakhov exponent from 0.50 (n-butylamine) to 3.03 (n-hexane), and the limiting adsorption capacity from 0.08 (n-hexane) to 12.8 (n-butylamine) mmol g-1. MIL-101 exhibited the strongest affinity to n-butylamine, but the weakest affinity to n-hexane. The determined Astakhov exponents and the isosteric heats of adsorption revealed the energetic heterogeneity of MIL-101. MIL-101 showed the most energetically homogeneous for n-hexane, but the most energetically heterogeneous for n-butylamine. The dynamic process of adsorption monitored by the QCM system demonstrated the distribution of the sorption sites within MIL-101. The metal sites within the MIL-101 were vital in adsorption process. MIL-101 gave much higher affinity and bigger adsorption capacity to VOCs than activated carbon, offering great potential for real applications in the adsorption and removal of VOCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0013936X
Volume :
45
Issue :
10
Database :
Academic Search Index
Journal :
Environmental Science & Technology
Publication Type :
Academic Journal
Accession number :
61438119
Full Text :
https://doi.org/10.1021/es200256q