Back to Search Start Over

A Positive and Unlabeled Learning Algorithm for One-Class Classification of Remote-Sensing Data.

Authors :
Li, Wenkai
Guo, Qinghua
Elkan, Charles
Source :
IEEE Transactions on Geoscience & Remote Sensing. Feb2011, Vol. 49 Issue 2, p717-725. 9p.
Publication Year :
2011

Abstract

In remote-sensing classification, there are situations when users are only interested in classifying one specific land-cover type, without considering other classes. These situations are referred to as one-class classification. Traditional supervised learning is inefficient for one-class classification because it requires all classes that occur in the image to be exhaustively assigned labels. In this paper, we investigate a new positive and unlabeled learning (PUL) algorithm, applying it to one-class classifications of two scenes of a high-spatial-resolution aerial photograph. The PUL algorithm trains a classifier on positive and unlabeled data, estimates the probability that a positive training sample has been labeled, and generates binary predictions for test samples using an adjusted threshold. Experimental results indicate that the new algorithm provides high classification accuracy, outperforming the biased support-vector machine (SVM), one-class SVM, and Gaussian domain descriptor methods. The advantages of the new algorithm are that it can use unlabeled data to help build classifiers, and it requires only a small set of positive data to be labeled by hand. Therefore, it can significantly reduce the effort of assigning labels to training data without losing predictive accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
49
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
62332087
Full Text :
https://doi.org/10.1109/TGRS.2010.2058578