Back to Search Start Over

A system for treating ischemic disease using human embryonic stem cell-derived endothelial cells without direct incorporation

Authors :
Moon, Sung-Hwan
Kim, Jong Soo
Park, Soon-Jung
Lee, Hye Jin
Do, Jeong Tae
Chung, Hyung-Min
Source :
Biomaterials. Sep2011, Vol. 32 Issue 27, p6445-6455. 11p.
Publication Year :
2011

Abstract

Abstract: Despite studies on the use of human embryonic stem cell (hESC) derivatives to treat ischemic diseases, there are technical safety issues that have yet to be resolved. Herein, we sought to develop a method for using secreted angiogenic factors from hESC-derived endothelial cell derivatives (hESC-ECs), while avoiding direct cell incorporation, to reduce tumorigenesis or unidentified side effects of injected cells in vivo. Multicellular aggregation of hESC-ECs (MA-hESC-ECs) increases survivability, and encapsulation in Matrigel (EnMA-hESC-ECs) blocks the cells’ in vivo migration. To examine the therapeutic effects of EnMA-hESC-ECs, we implanted both forms of hESC-ECs in a mouse model of hindlimb ischemia. Treatment with EnMA-hESC-ECs suppressed limb loss and tissue damage with no noticeable side effects, such as tumorigenesis or teratoma formation, and the Matrigel implant could be easily removed after the procedure. Thus, MA and the encapsulation system are effective techniques for utilizing humoral factors secreted by hESC derivatives that aid in the survivability and safety. We expect these results to contribute to the thriving stem cell field by improving the bioavailability of hESC derivatives for regenerative medicine. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01429612
Volume :
32
Issue :
27
Database :
Academic Search Index
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
62670077
Full Text :
https://doi.org/10.1016/j.biomaterials.2011.05.026