Back to Search Start Over

Generalized Euler–Lagrange equations for fractional variational problems with free boundary conditions

Authors :
Yousefi, S.A.
Dehghan, Mehdi
Lotfi, A.
Source :
Computers & Mathematics with Applications. Aug2011, Vol. 62 Issue 3, p987-995. 9p.
Publication Year :
2011

Abstract

Abstract: In this article we are going to present necessary conditions which must be satisfied to make the fractional variational problems (FVPs) with completely free boundary conditions have an extremum. The fractional derivatives are defined in the Caputo sense. First we present the necessary conditions for the problem with only one dependent variable, and then we generalize them to problems with multiple dependent variables. We also find the transversality conditions for when each end point lies on a given arbitrary curve in the case of a single variable or a surface in the case of multiple variables. It is also shown that in special cases such as those with specified and unspecified boundary conditions and problems with integer order derivatives, the new results reduce to the known necessary conditions. Some examples are presented to demonstrate the applicability of the new formulations. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
08981221
Volume :
62
Issue :
3
Database :
Academic Search Index
Journal :
Computers & Mathematics with Applications
Publication Type :
Academic Journal
Accession number :
63605324
Full Text :
https://doi.org/10.1016/j.camwa.2011.03.064